Datenblatt-Suchmaschine für elektronische Bauteile
  German  ▼
ALLDATASHEETDE.COM

X  

SM320C6712D-EP Datenblatt(PDF) 8 Page - Texas Instruments

Click here to check the latest version.
Teilenummer SM320C6712D-EP
Bauteilbeschribung  FLOATING-POINT DIGITAL SIGNAL PROCESSORS
Download  109 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
Hersteller  TI1 [Texas Instruments]
Direct Link  http://www.ti.com
Logo TI1 - Texas Instruments

SM320C6712D-EP Datenblatt(HTML) 8 Page - Texas Instruments

Back Button SM320C6712D-EP Datasheet HTML 4Page - Texas Instruments SM320C6712D-EP Datasheet HTML 5Page - Texas Instruments SM320C6712D-EP Datasheet HTML 6Page - Texas Instruments SM320C6712D-EP Datasheet HTML 7Page - Texas Instruments SM320C6712D-EP Datasheet HTML 8Page - Texas Instruments SM320C6712D-EP Datasheet HTML 9Page - Texas Instruments SM320C6712D-EP Datasheet HTML 10Page - Texas Instruments SM320C6712D-EP Datasheet HTML 11Page - Texas Instruments SM320C6712D-EP Datasheet HTML 12Page - Texas Instruments Next Button
Zoom Inzoom in Zoom Outzoom out
 8 / 109 page
background image
SM320C6712EP, SM320C6712CEP, SM320C6712DEP
FLOATINGPOINT DIGITAL SIGNAL PROCESSORS
SGUS055 − SEPTEMBER 2004
8
POST OFFICE BOX 1443
HOUSTON, TEXAS 77251−1443
CPU (DSP core) description
The CPU fetches advanced very-long instruction words (VLIW) (256 bits wide) to supply up to eight 32-bit
instructions to the eight functional units during every clock cycle. The VLIW architecture features controls by
which all eight units do not have to be supplied with instructions if they are not ready to execute. The first bit
of every 32-bit instruction determines if the next instruction belongs to the same execute packet as the previous
instruction, or whether it should be executed in the following clock as a part of the next execute packet. Fetch
packets are always 256 bits wide; however, the execute packets can vary in size. The variable-length execute
packets are a key memory-saving feature, distinguishing the C67x CPU from other VLIW architectures.
The CPU features two sets of functional units. Each set contains four units and a register file. One set contains
functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files
each contain 16 32-bit registers for a total of 32 general-purpose registers. The two sets of functional units, along
with two register files, compose sides A and B of the CPU [see the functional block and CPU (DSP Core) diagram
and Figure 1]. The four functional units on each side of the CPU can freely share the 16 registers belonging to
that side. Additionally, each side features a single data bus connected to all the registers on the other side, by
which the two sets of functional units can access data from the register files on the opposite side. While register
access by functional units on the same side of the CPU as the register file can service all the units in a single
clock cycle, register access using the register file across the CPU supports one read and one write per cycle.
The C67x CPU executes all C62x
 DSP instructions. In addition to C62x fixed-point DSP instructions, the
six out of eight functional units (.L1, .M1, .D1, .D2, .M2, and .L2) also execute floating-point instructions. The
remaining two functional units (.S1 and .S2) also execute the new LDDW instruction which loads 64 bits per
CPU side for a total of 128 bits per cycle.
Another key feature of the C67x CPU is the load/store architecture, where all instructions operate on registers
(as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data
transfers between the register files and the memory. The data address driven by the .D units allows data
addresses generated from one register file to be used to load or store data to or from the other register file. The
C67x CPU supports a variety of indirect addressing modes using either linear- or circular-addressing modes
with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 32 registers. Some
registers, however, are singled out to support specific addressing or to hold the condition for conditional
instructions (if the condition is not automatically “true”). The two .M functional units are dedicated for multiplies.
The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results
available every clock cycle.
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory.
The 32-bit instructions destined for the individual functional units are “linked” together by “1” bits in the least
significant bit (LSB) position of the instructions. The instructions that are “chained” together for simultaneous
execution (up to eight in total) compose an execute packet. A “0” in the LSB of an instruction breaks the chain,
effectively placing the instructions that follow it in the next execute packet. If an execute packet crosses the
fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of
the current fetch packet is padded with NOP instructions. The number of execute packets within a fetch packet
can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one
per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch
packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units
for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit
registers, they can be subsequently moved to memory as bytes or half-words as well. All load and store
instructions are byte-, half-word, or word-addressable.
C62x is a trademark of Texas Instruments.


Ähnliche Teilenummer - SM320C6712D-EP

HerstellerTeilenummerDatenblattBauteilbeschribung
logo
Texas Instruments
SM320C6711-EP TI1-SM320C6711-EP Datasheet
1Mb / 128P
[Old version datasheet]   FLOATING-POINT DIGTAL SIGNAL PROCESSORS
SM320C6711B-EP TI1-SM320C6711B-EP Datasheet
1Mb / 128P
[Old version datasheet]   FLOATING-POINT DIGTAL SIGNAL PROCESSORS
SM320C6711C-EP TI1-SM320C6711C-EP Datasheet
1Mb / 128P
[Old version datasheet]   FLOATING-POINT DIGTAL SIGNAL PROCESSORS
SM320C6711D-EP TI1-SM320C6711D-EP Datasheet
1Mb / 128P
[Old version datasheet]   FLOATING-POINT DIGTAL SIGNAL PROCESSORS
SM320C6713-EP TI-SM320C6713-EP Datasheet
1Mb / 123P
[Old version datasheet]   FLOATING-POINT DIGITAL SIGNAL PROCESSORS
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100  ...More


Datenblatt Download

Go To PDF Page


Link URL




Privatsphäre und Datenschutz
ALLDATASHEETDE.COM
War ALLDATASHEET hilfreich?  [ DONATE ] 

Über Alldatasheet   |   Werbung   |   Kontakt   |   Privatsphäre und Datenschutz   |   Linktausch   |   Hersteller
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com